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Conjugated metallorganic molecules have localized spins at the central transition-metal ions and mobile �

electrons in the surrounding ligands. Here we construct model Hamiltonians based on first-principles calcula-
tions to describe spins at the ions and � electrons in the ligands. It is shown that the g factor and magnetic
susceptibility in such a molecule can be tuned to a great extent by an electrical voltage across one of the
ligands. The underlying physics is that the voltage modifies the charge distribution of the ligand, which in turn
changes the interplay of the ion’s spin-orbit coupling and the energy splitting among its d orbitals. The
capability of controlling the g factor and magnetism at the molecular level has great implications in quantum
information storage and processing.
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Organic molecules for charge transport, as in molecular
wire junctions,1–4 or for magnetism, as in nanomagnets,5–7

are being extensively investigated. The stimulated quest for
spintronics and quantum computing8–10 renders it desirable
to synthesize nanostructures with integrated spin and charge
components, which can achieve sophisticated functions with
much simpler circuitry and less demanding fabrication. Con-
jugated metallorganic molecules are one such type of mate-
rial. The localized electron spins at central ions possess
quantum information, and the �-conjugated ligand provides
an efficient pathway for charge transport without spoiling the
spins. For a free transition-metal ion, because of its spin-
orbit �SO� interaction, the total angular momentum, j �j= l
+s, l+s−1, . . ., �l−s�, with l and s being orbital and spin
angular momenta�, is a good quantum number to characterize
an eigenstate, which will be split up into 2j+1 sublevels with
an equal spacing, g�BH, upon the application of a magnetic
field, H, where g is the Landé g factor,11

g = 1 +
j�j + 1� − l�l + 1� + s�s + 1�

2j�j + 1�
. �1�

The g factor determines the ion’s magnetic properties includ-
ing the magnetic moment of each sublevel, −g�Bmj �mj
=−j , . . . , j�, and the electron spin resonance frequency, �
= �g��BH /�. A metal ion in a compound, however, can ex-
hibit multifarious magnetic behaviors because the magnetic
moment and g factor can be strongly influenced by the local
environment. In this Brief Report, we show that in a conju-
gated metallorganic molecule the magnetism and g factor
can be electrically tuned to a great extent, by modifying the
charge distribution in one of the ligands. Because the energy
scale associated with the g-factor calculations, typically less
than 10−4 eV, is much smaller than the energy uncertainty in
common first-principles methods, we construct a spin Hamil-
tonian based on the lattice and electronic structures obtained
from the first-principles calculations to study the g factor and
magnetic susceptibility. In examining how an applied voltage
affects charge distribution of � electrons in the conjugated
ligand, we employ a tight-binding model, with model param-
eters obtained from first-principles results in literature, to
make physics more transparent and computation more trac-
table. Electrically controlled g factor in semiconductor het-
erostructures are recently studied both experimentally and

theoretically.12–14 The capability of controlling the g factor
and magnetism at the molecular level will enable simple and
versatile manipulation of individual electron spins.

Figure 1 shows a representative conjugated metallorganic
molecule containing an ion, Fe �III�. The surrounding ligands
are phenanthroline, a strong ligand used in various com-
plexes. One of the phenanthroline ligands is decorated by
two dithiol �i.e., SH� groups at the ends for good contact
with the electrodes. In this molecule the Fe ion, which has
five 3d electrons, is surrounded by six N atoms, forming an
octahedron. Such a molecule can be self-assembled because
of its � conjugation.15 The Cartesian coordinates throughout
this Brief Report are set with the origin at the central ion and
the six N atoms along the x, y, and z axes. The two N atoms
in the ligand with the dithiol groups are in the xy plane. The
ligand field due to the octahedral coordination breaks the
fivefold degeneracy of the d orbitals in a free Fe ion into
twofold-degenerate eg states comprising dz2 and dx2−y2 and
threefold-degenerate t2g states comprising dxy, dyz, and dxz,
with an energy separation �. We carry out first-principles
calculations �generalized gradient approximation� and obtain
the accurate electronic structure and optimized lattice con-
figuration of this molecule. In the ground state, the six N
atoms are found to be at an equal distance a=1.0 Å from Fe
�III� and �=3.2 eV. The total spin of the ground state is
found to be 1/2, with all five electrons occupying the t2g
levels, i.e., the ligand field is stronger than the exchange
interaction that tends to align electron spins to achieve a high

FIG. 1. A representative conjugated metallorganic molecule
containing a transition-metal ion, Fe �III�. The dithiol groups at the
two ends of one ligand allow good contact between the molecule
and electrodes.
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spin of 5/2 �Hund’s rule�. This is consistent with the low-spin
state observed in similar materials �Fe�phenanthroline�3�I8.16

The large � suggests that the eg states can be safely ne-
glected in studying spin states in these molecules.17 The elec-
tron spin in such a system would have a long lifetime, for all
vibrational modes that couple with the central ion, according
to our first-principles calculations, have an energy larger than
100 cm−1, and the spin relaxation must resort to the two-
phonon Raman process, as in N@C60.

18

Since five 3d electrons in the three t2g orbitals is equiva-
lent to one hole in a closed t2g shell, we use the hole repre-
sentation, where the SO coupling changes sign, becoming
negative, and the energy order of the three orbitals is re-
versed, compared in the electron representation. In a perfect
octahedral structure, the three t2g orbitals are degenerate and
behave like three p orbitals19,20 since the states, D1� 1

�2
�dxz

+ idyz�, D0= idxy, and D−1� 1
�2

�dxz+ idyz�, have the same ma-
trix elements of the orbital angular momentum lk as the p
orbitals except the sign: �pi�lk�pj	=−�Di�lk�Dj	, where p1

=− 1
�2

�px+ ipy�, p0= pz, and p−1= 1
�2

�px− ipy�. Thus orbital l in
t2g is equivalent to −l within p orbitals and the magnetic
moment, �B�l+2s� in t2g becomes �B�−l+2s� in p, which
leads to a different expression of the g factor, g=−1
+3 j�j+1�+s�s+1�−l�l+1�

2j�j+1� .19 For a single particle in these t2g states,
j can be either 1/2 with g=−2 or j=3 /2 with g=0.

We examine how the g factor and magnetism change
when the three t2g orbitals have slightly different energies.
Denoting d1=dxy, d2=dxz, d3=dyz, and �di�VT�di	=Ei for elec-
trons, where VT is the potential due to the ligands, and using
the basis of �di↑ ,di↓�, the Hamiltonian in the hole represen-
tation, which includes both the SO coupling and the Zeeman
energy, reads

H =

− E1 + �BHz �B�Hx − iHy� − i�BHx −

i

2
� i�BHy

1

2
�

�B�Hx + iHy� − E1 − �BHz −
i

2
� − i�BHx −

1

2
� i�BHy

i�BHx
i

2
� − E2 + �BHz �B�Hx − iHy� −

i

2
� − i�BHz 0

i

2
� i�BHx �B�Hx + iHy� − E2 − �BHz 0

i

2
� − i�BHz

− i�BHy −
1

2
�

i

2
� + i�BHz 0 − E3 + �BHz �B�Hx − iHy�

1

2
� − i�BHy 0 −

i

2
� + i�BHz �B�Hx + iHy� − E3 − �BHz

� . �2�

Here we assume that the applied magnetic field always co-
incides with one of the symmetry axes, i.e., x, y, or z axis. To
see the interplay of the SO coupling and the energy splitting
among t2g states more clearly, for simplicity we assume that
dxy always resides at the middle of dxz and dyz in energy, 	
=E2−E1=E1−E3. The SO coupling of Fe�III� is fixed �
=−300 cm−1.21 We obtain the magnetic properties of the sys-
tem by diagonalizing the Hamiltonian at a small magnetic
field �linear response�. Since the system has an odd number
of electrons, according to Kramer’s theorem, the six eigen-
states in this system can be grouped into three Kramer’s
doublets, 
2k−1 and 
2k �k=1,2 ,3�, which is split upon the
application of magnetic field H� along the � axis ��
=x ,y ,z� with an energy difference of gk

��BH�. The magnetic
moments of each doublet, accordingly, have the same mag-
nitude but are opposite in sign, �2k−1

� =−�2k
� =gk

��B /2, where
�k

�=�B�
k�l�+2s��
k	. In Fig. 2, we plot the energies and �gk
��

for the three doublets as a function of the energy splitting
factor, 	. We see that when 	=0, the SO coupling breaks the
six t2g states into a quartet and doublet. The doublet is the
ground state with an isotropic g factor, �g1

��=2, and the g
factors of the quartet are g2

�=g3
�=0, in agreement with the

analysis by mapping t2g to p states. As 	 becomes finite, the
quartet further splits into two doublets and the g factors be-
come anisotropic. The g factor can be dramatically modified,
from 0 to over 3, within a relatively small 	 change of 0.1
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FIG. 2. �a� Energy, �b� �gz�, �c� �gx�, and �d� �gy� of the eigenstates
as a function of energy splitting 	 between t2g levels. Solid, dotted,
and dashed lines correspond to the ground state and the first and
second excited states, respectively. The SO coupling is �
=−300 cm−1.
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eV. In addition, gx �gy� becomes 0 at a finite 	 for both the
ground and excited states, as shown in Figs. 2�c� and 2�d�,
indicating that the system with that 	 cannot be magnetized
when the magnetic field is along the x �y� axis.

To further understand the g-factor change, we plot in Fig.
3 the contributions from the orbital and spin angular mo-
menta to the magnetic momentum along the magnetic field
direction for both the ground and excited states. When �	�
� ���=0.03 eV, where the energy splitting dominates over
the SO coupling, the increase of 	 always diminishes the
magnitude of the orbital, ��l�	�, which is the so-called orbital
quenching due to the energy splittings.19,20 Meanwhile the
spin keeps increasing, approaching 1/2, its free-electron
value. Consequently the g factor approaches 2 and becomes
isotropic when 	 is large. When �	�
 ���, however, the depen-
dences of spin and orbital on 	 become more complicated. In
this regime, the SO interaction, which connects states with
different orbitals and spins, can partially reinstate the orbital
angular momentum and meanwhile suppress the spin from
its free-electron value. For the ground state, as shown in Fig.
3�a�, the magnitude of �lz	 increases and that of �sz	 de-
creases, while both remaining negative, as 	 decreases. For
the first excited state, as shown in Fig. 3�b�, however, the SO
coupling switches the direction of spin as 	 decreases, and
�lz	 and 2�sz	 cancel each other when 	 approaches 0.22 Com-
pared to �lz	 and �sz	, �lx	 and �sx	 change more dramatically
as 	 varies, as shown in Figs. 3�c� and 3�d�. In particular, a
discontinuity, where both the spin and the orbital change
their signs, occurs when gx or gy becomes zero at the finite 	.
At finite temperatures the magnetism is characterized by the
magnetic susceptibility, ��, M�=��H�, with M� being the

averaged magnetic moment, M�=
�k�k

�e−�k/kBT

�ke
−�k/kBT , where �k is en-

ergy of the state �
k	, kB is the Boltzmann constant, and T is
temperature.

The energies of the t2g orbitals, Ei, ultimately come from
the interaction between the ion and ligands. Although the
covalence bonding between the d orbitals and ligand molecu-
lar orbitals is important to quantitatively account for the
splitting between eg and t2g states,23 to elucidate the concept
of electrically controlled magnetism and g factor, we use a
simplified point charge model24 to estimate Ei. In this model
the energy levels in the ion are determined by the Coulomb
potential caused by the six surrounding N atoms with nega-
tive excess charges

VT�r� = �
i=1,6

qi

��x − xi�2 + �y − yi�2 + �z − zi�2
, �3�

where r��x ,y ,z�, and �xi ,yi ,zi� are the coordinates of the
ith N atom and qi its excess charge. Near the center, r��r�
=�x2+y2+z2→0, where the Fe�III� is located, the potential
can be expanded by using �1−2qt+q2�−1/2=�l=0

� Pl�t�ql, when
Pl is the lth order Legendre polynomial. The wave functions
of the 3d orbitals are �3dpq	= 1

81
� 2

� � Z
a0

�7/2e−�Z/3a0�rpq, where
pq=xy ,xz ,yz, a0 is the Bohr radius, and Z is the effective
nuclear charge. For Fe �III�, Z=6.25, according to Slater’s
formula.25 We find

E1 − E2 = ��qz − qy�, E1 − E3 = ��qz − qx� , �4�

where �=−�e2 /a��−54�a0 /aZ�2+6075�a0 /aZ�4� and q� is the
total charge of the two N atoms along the � axis. From this
model, the energy splitting between the centers of eg and t2g
states would be

� =
14175

2

e2

a

 a0

aZ
�4

�
i=1

6

qi. �5�

According to Eq. �4� and Fig. 2, the magnetism and g
factor can be tuned by controlling the charges, q�, which can
be achieved by applying a gate voltage across the ligand with
the dithiol groups. To demonstrate this, we consider the fol-
lowing tight-binding model for the conjugated ligand, in
which each C, N, and S atom contributes one � electron,26,27

HL = − �
�ij	s

tij�cis
† cjs + H.c.� + �

i

��i�V�cis
† cis + Uini↑ni↓�

+ �
�ij	

K

2
�ui − uj�2. �6�

Here cis
† creates a � electron with spin s at atomic site i, tij is

the electron hopping between nearest neighboring site i to
site j. The electron-lattice coupling is included by assuming
that the hopping integral across a bond depends on the bond
length tij = t0�1−��ui−uj��, where ui is the displacement of
the ith atom. The � bond between two adjacent atoms in the
ligand are described by a bond-stretching spring with an
elastic constant K. This model is similar to the Su-Schrieffer-
Heeger model widely used for conjugated polymers and
molecules,28 and the typical values of the electron-lattice
coupling, elastic constant, and hopping, �=5 eV /Å, K
=32 eV /Å2, and t0=1.7 eV, are used. The Hubbard interac-
tion is also taken into account, and for simplicity a common
value Ui=1 eV for C, N, and S atoms is adopted.29 In this
model the site energy, �i, is a function of the applied voltage,
V. In the absence of voltage, the site energies, �i

0, for
C, N, and S are set 0, −0.8, and 1.3 eV, respectively, which
were extracted from systematic local-density functional stud-
ies of conjugated polymers.30 The Hamiltonian is solved
self-consistently by using the unrestricted Hartree-Fock
approximation.31 The excess charges in the two N atoms for
V=0 are found to be equal, −0.12�e�, where e is the electron
charge, which results in �=3.2 eV from Eq. �5�, consistent
with the first-principles calculations. The four N atoms in the
other two ligands also have this excess charge, which re-
mains constant and independent to V. In Fig. 4, we plot the
result for the case where the electrostatic potential in the
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FIG. 3. �Color online� Magnetic-moment contributions from the
orbital and spin angular momenta for the ground states �a� and �c�
and for the first excited state �b� and �d�. Red �dark gray� and green
�light gray� lines represent the orbital and spin, respectively.
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ligand depends on V in a simple linear form, �i�V�=�i
0

+ �z /L�V, with L being the distance between the two elec-
trodes attached to the S atoms and z the distance between the
ith atom to the anode. Although the electrostatic potential
profile inside a molecular junction can strongly deviate from
the linear dependence,32 it is shown that when a scatter cen-
ter is in the middle of a molecule, as the N atoms in this case,
the linear profile is quite reasonable.33 We see from Fig. 4�a�
that the applied voltage induces a change in excess charges
of the two N atoms, which in turn gives rise to energy split-
tings among the t2g orbitals, as shown in Fig. 4�b�. Substitut-
ing the obtained Ei in Hamiltonian �1�, we calculate the g
factor of the ground state and the magnetic susceptibility at

room temperature as a function of the applied voltage and
plot them in Figs. 4�c� and 4�d�. The anisotropic g factors
can be tuned between 0 and over 3 under a voltage less than
1 V, and the magnetic susceptibility can be significantly in-
creased or decreased by the electric voltage, depending on
the magnetic-field direction. Although the electric current
through the ligand due to such a voltage may result in an
additional magnetic field, 	H, at the transition-metal ion, we
estimate 	H�0.1 G,34 which is much smaller than a typical
external magnetic field H0 in electron spin resonance, H0
�103 G, indicating that the electric-current effect on the
local spin can be safely neglected. The tunability of g factor
in such a molecule is extraordinary in terms of both range
and responsivity. We emphasize that the electrically con-
trolled g factor and magnetism can be achieved for electro-
static potentials other than the linear form, as long as the
applied voltage can change the charge distribution in the
ligand.

The electrically controlled g factor and magnetism in con-
jugated metallorganic molecules will allow electron spin
resonance with a spatial resolution at the molecular level
under a homogeneous magnetic field, which is important to
coherently manipulate individual electron spins, a prerequi-
site to quantum computations. In addition, by controlling the
magnetic moment and susceptibility, quantum information in
individual spins can be selectively exposed, hidden, or pro-
cessed, which can be used for quantum encryption, smart
memory, and other spin logic devices.
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FIG. 4. Voltage-dependent charge of the two N atoms in the
ligand with the �a� dithiol groups, �b� energy Ei of the t2g orbitals,
�c� �g�� of the ground state, and �d� magnetic susceptibility ��. Solid
and dotted lines in panel �a� plot the charge on individual N atoms,
and the dashed line is the average. Dotted and dashed lines in panel
�b� plot the energies of dxz and dyz, respectively. The energy of dxy

is fixed at 0. Solid, dotted, and dashed lines in panel �c� and �d� are
for �=z, x, and y, respectively.
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